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We establish a phase diagram of a spinor exciton-polariton condensate in a disordered microcavity in the
presence of an external magnetic field. We find that the combination of the full paramagnetic screening and
Anderson localization leads to the formation of a condensed phase having both localized and superfluid
components. This is reflected by different dispersions of elementary excitations for the two polarization
components.
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I. INTRODUCTION

Exciton polaritons �polaritons� are the new eigenstates
formed from quantum-well excitons strongly coupled with
cavity photons. Like excitons, in the low-density limit they
behave as two-dimensional �2D� weakly interacting bosons,1

having extremely small effective mass inherited from cavity
photons. Stimulated scattering toward the ground state has
been demonstrated2,3 and their Bose Einstein condensation
�BEC� reported.4–7 Because of the finite radiative life time of
polaritons, the relaxation kinetics can play an important role
in the formation of a polariton condensate. It has been
shown8 that increasing the temperature and going toward
positive exciton-photon detuning can strongly improve the
relaxation rate of polaritons, which becomes much faster
than their life time. In that regime a quasiequilibrium distri-
bution of polaritons forms and the phase transition toward a
Bose condensed phase can be described by the standard ther-
modynamic theory. In the quasiequilibrium regime cavity po-
laritons are expected to undergo Kosterlitz-Thouless phase
transition toward superfluidity,9 which was not experimen-
tally observed in CdTe �Ref. 5� and GaN �Ref. 6� microcavi-
ties, strongly affected by structural disorder and localization.
Using the Gross-Pitaevskii equation and taking into account
a realistic disorder potential we have recently shown10 that
with increase in the density, polaritons first undergo a phase
transition toward an Anderson glass phase,11 characterized
by a long spatial coherence, a flat dispersion, and delocaliz-
ing role of the interactions. The phase-coherent condensate is
localized in minima of the disorder potential and demon-
strates no superfluid behavior. A further increase in the den-
sity leads to a blueshift of the chemical potential �, the re-
pulsive polariton-polariton interactions resulting in
percolation process and phase transition toward a superfluid
state. This interpretation has been recently supported, first by
the confirmation of the strong role of the disorder on the
nature of the polariton condensate12 and second by the ob-
servation of a Bogoliubov-type dispersion of the elementary
excitations in a GaAs cavity,13 much less affected by disor-
der than GaN or CdTe structures. The Anderson glass has
also been observed recently for atomic condensates,14 which
has warmed up the general interest in the subject.

Another important topic in a domain of quantum micro-
cavities is spin dynamics of polaritons which has been at the
heart of an intense theoretical and experimental activities in
the past years.1 Being composed of heavy-hole exciton and
cavity photon, polaritons are spinor quasiparticles with two
possible spin projections �1 on the structure growth axis. In
the domain of polariton BEC, the polarization of the system
plays the role of the order parameter of the phase
transition.15 Its orientation is controlled by an effective in-
plane magnetic field arising from possible cavity
anisotropies,16 real applied magnetic field,17 and spin-
dependent polariton-polariton interactions,18 which are usu-
ally strongly spin anisotropic. The interaction constant �1
between particles having the same spin projections on struc-
ture growth axis �triplet configuration� is much larger than
�2, the interaction constant between particles having oppo-
site spin projections �singlet configuration�. As a result, in
the absence of the external magnetic field, it is energetically
preferential for the condensate to be linearly polarized, as
observed experimentally by several groups.7,16,19 In bulk
GaN cavities, the situation is different because of the strong
mixing in the polariton state of the A and B excitons based
on heavy and light holes which makes the polariton-polariton
interaction spin independent. As a result, there is no prefer-
ential orientation for the polarization of the condensate,
which can take any direction from one experiment to
another.6

One of the intriguing polarization-related phenomena re-
cently predicted for spin-anisotropic polariton-polariton in-
teraction is the full paramagnetic screening, also known as
spin-Meissner effect.20 A magnetic field applied along the
structure growth axis would lead to a Zeeman splitting of
circularly polarized states. The noninteracting condensate is
expected therefore to occupy the lowest available energy
state, redshifting its chemical potential versus magnetic field
and staying fully circularly polarized. The situation is how-
ever different if spin anistropy of polariton-polariton interac-
tions is accounted for. Indeed, the transition from a linear to
a circular polarization would cost a macroscopic energy
��1−�2�n2 /2 which, at low fields and high enough polariton
concentrations, is larger than the magnetic energy �
=�BnH that the condensate would gain if it were circularly
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polarized. As a result, below a critical field, the Zeeman
splitting is fully suppressed. The chemical potential remains
independent of the magnetic field and the condensate is el-
liptically polarized, with a circular polarization degree pro-
gressively increasing versus magnetic field. Above the criti-
cal field the magnetic energy becomes larger than the
interaction energy and the Zeeman splitting is recovered. The
condensate becomes circularly polarized and redshifts with
increase of the magnetic field.

So far, the interplay between spin response of a conden-
sate and its Anderson localization due to the disorder has
never been analyzed, neither for the case of polaritons nor
for cold atoms. In this paper we establish the phase diagram
of spinor polariton condensates in the presence of structural
disorder and external magnetic field. We find a peculiar con-
densed phase, where the condensate, elliptically polarized as
a whole, is strongly inhomogeneous in space with one circu-
lar component localized in the minima of the disorder poten-
tial and another one delocalized and superfluid. It should be
noted that similar effects can be observed in a domain of
BEC of cold atoms possessing nonzero spin21 in disordered
optical lattices. The difference will be that the number of
possible spin projections for an atom exceeds two
�e.g., −1 ,0 ,+1 for spin-1 atoms�. Thus, the variety of phases
will be increased as compared to the case of polaritons con-
sidered here.

II. SINGLE TRAP

Let us first consider the case T=0 K, assuming for sim-
plicity that particles have an infinite mass �Thomas-Fermi
approximation�. We consider a single rectangular potential
well of a depth V0, surface S0 in system of total surface S,
placed in a magnetic field B applied parallel to the structure
growth axis. The interaction of polaritons in the triplet con-
figuration is described by the constant which can be
estimated22 as �1�3EBaB

2 , and the singlet interaction con-
stant �2 which is much smaller23 than �1 is neglected. At
zero magnetic field and low particle density, the polariton
condensate is linearly polarized with the same number of
particles for both circular components �N�+=N�−=N /2� and
localized in the region of a potential trap. Increasing the
particle density, the condensate delocalizes and becomes su-
perfluid when the chemical potential reaches the edges of the
trap �=−V0+�1N /2S0=0 �we take the potential energy out-
side the trap as the zero reference�, which occurs when the
total number of polaritons becomes N=2V0S0 /�1.

We now consider the case of a finite magnetic field
sketched in Fig. 1. Since the polaritons are electrically neu-
tral, the magnetic field does not change the confining poten-
tial and thus does not directly affect the localization. If the
number of polaritons in the system is small, the magnetic
field exceeds the critical spin-Meissner field ���c
=�1N /S0. The circular polarized states become split and the
localized condensate occupies the lowest of these two states
becoming circularly polarized �N=N�+�. The increase in N
increases the chemical potential of the �+-polarized conden-
sate, as

� = �1 = − V0 − �/2 + �1N/S0 �1�

provided that ��−� /2. The energy of the unpopulated �−

state remains unchanged.
Depending on the ratio between the Zeeman splitting and

the confining energy, two different situations can take place.
If V0�� �Fig. 1�a��, the increase in the density leads to a
delocalization of �+ condensate ��=�1� when the condition
�	−� /2 is fulfilled. At this point the condensate becomes a
circularly polarized superfluid with a chemical potential,

� = �2 = − �/2 + �1�N −
V0S0

�1
�/S �2�

which is valid in the range � /2−V0	�	−� /2. Here S is
the total size of the system. With a further increase in N, the
local density in the trap region becomes large enough so that
the spin-Meissner effect takes place there and �− component
appears when �	� /2−V0. As a whole, the condensate be-
comes elliptically polarized with some finite percentage of
the �− component and the chemical potential,

� = �3 = − �/2 + �1�N�+ −
V0S0

�1
�/S = �/2 − V0 +

�1N�−

S0

�3�

which is valid while � /2	�	� /2−V0. However, the
�− component remains localized in a trap region and does
not participate in the superfluidity. The condensate has there-
fore one localized component and one superfluid. The polar-
ization in this case is elliptic inside the trap and circular
outside. A further increase in the density allows a delocaliza-
tion of the �− component as well which occurs when �
	� /2. Above this value the chemical potential reads
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FIG. 1. �Color online�. Potential profile seen by �+ �red/dark
gray� and �− polaritons �black� in the presence of a magnetic field
yielding a Zeeman splitting �. The dashed lines shows the position
of the chemical potential for different phases. �a� V0��, �=�1: �+

localized condensate; �=�2 �+ superfluid condensate; �=�3: new
condensed phase with the �− component localized and the �+ delo-
calized; �=�4: elliptically polarized superfluid phase. �b� V0��,
�=�1: �+ localized condensate; �=�2�: localized elliptically po-
larized condensate; �=�3 new condensed phase with the �− com-
ponent localized and the �+ delocalized; �=�4: superfluid phase
elliptically polarized.
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� = �4

= − �/2 + �1�N�+ −
V0S0

�1
�/S

= �/2 + �1�N�− −
V0S0

�1
�/S �4�

under the condition �	� /2.
The second situation corresponds to V0�� �Fig. 1�b��.

For small occupancies corresponding to �=�1 the conden-
sate is fully �+ polarized and localized, which with the den-
sity increase transforms into a localized elliptically polarized
condensate with a spin-Meissner effect taking place and the
chemical potential,

� = �2� = − V0 − �/2 + �1N�+/S0 = − V0 + �/2 + �1N�−/S0

�5�

valid in the range −� /2	�	� /2−V0. Further increase
in the density leads to the transition at �	−� /2 into a phase
characterized by delocalized and superfluid �+ component
and localized �−, corresponding to �=�3. Finally, at very
high densities, when �	� /2 both components become de-
localized ��=�4�.

III. RANDOM DISORDER POTENTIAL

The generalization of this picture to the case of a two-
dimensional random disorder potential is straightforward. In
this case the blueshift for each polarization component is still
given by the expression �1N�� /S0,�� but now the surface
S0,�� occupied by each circular component of the condensate
increases with the number of particles in this component
since more and more minima of the potential become filled.
For a Gaussian distribution of the disorder potential with a
zero mean value and root-mean-square fluctuation V0 the sur-
face S0,�� occupied by the states having an energy smaller
than a given value E is given by S0�E�= S

2 �1+erf�E /V0��. For
a given chemical potential the number of particles in each
component is therefore given by

N�
 = �
−�

���/2 S

2�1
�1 + erf�E/V0��dE

=
S

2�1
��� � �/2�	1 + erf��� � �/2�/V0�


+
V0

��
e−�� � �/2�2/V0

2� . �6�

Dividing the result by S one obtains the particle density of
each component as a function of the chemical potential �.
The corresponding dependence is superlinear because the
surface occupied by the condensate is increasing with �, and
therefore more particles are necessary in order to have the
same increase in the energy. According to the percolation
theory, the delocalization threshold in 2D for a potential with
a symmetric distribution is reached when mean value of the
repulsion energy becomes equal to V0. Similarly to the case
of a single trap previously discussed, the delocalization of

the �+ component occurs if �	−� /2. The appearance of
the �− component occurs when �	� /2−V0 and it becomes
delocalized when �	� /2. As in the case of a single poten-
tial trap, we have two possible situations of V0��, and
V0��. In both cases, there is a regime when one component
is delocalized and the other is localized and polarization var-
ies from one point to another in the real space. After chemi-
cal potential passes the threshold �=� /2, both components
become delocalized and polarization remains elliptic tending
to linear in the infinite density limit, when both the disorder
and the magnetic field can be neglected compared to the
interaction energy.

Now we can plot the phase diagram of the disordered
polariton system under magnetic field �Fig. 2�a�� which maps
all the phases previously discussed. The solid line is given by
the condition �=� /2−V0, below this line there is only one
polarization component present. The dotted line is given by
the condition �=−� /2 corresponding to a percolation tran-
sition. The dash-dotted line is given by the condition of de-
localization of the minority component �=� /2. All the cal-
culations have been performed for a typical CdTe
microcavity parameters, similar to those used in previous
calculations.10 The maximal Zeeman splitting of 2 meV
shown in this diagram could be achieved for a magnetic field
of about 20 T.

After studying the simplified system analytically, we have
carried out the numerical analysis corresponding to the case
of finite effective mass m which takes into account the ki-
netic energy. We minimize the free energy of the system of
interacting polaritons in a disorder potential:

F =� dr� 2

2m
��+

��2�+ + �−
��2�−� + V��+2 + �−2�

+
�1

2
��+4 + �−4� +

�

2
�− �+2 + �−2�� . �7�

The results are shown in Fig. 2�b�. Qualitative behavior is
the same as in the infinite mass approximation but all thresh-
olds are reduced due to the kinetic-energy term. One can
clearly observe that the effect of the finite mass is stronger
for the localization-delocalization transition than for the
circular-elliptic transition because the particles with a light
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FIG. 2. Phase diagram for a polariton condensate in a disordered
system under magnetic field corresponding to a bare exciton Zee-
man splitting �: �a� infinite mass approximation �analytic solution�
and �b� finite mass �numeric solution of Gross-Pitaevskii equa-
tions�. Different phases are indicated by text labels. Phase bound-
aries are indicated with different line styles described in the text.
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effective mass effectively penetrate into the barriers whereas
the total kinetic energy may be relatively small as compared
to the magnetic energy.

The peculiar phase with a semidelocalized condensate and
polarization varying from point to point deserves special at-
tention. An example of a spatial distribution of circular po-
larization degree �c for a particular realization of a disorder
potential is given in Fig. 3. The regions with the localized �−
component show a polarization degree different from 1
whereas outside these regions the condensate is fully circu-
larly polarized. A sufficient increase in the particle density
would lead to the percolation of the �− component; the re-
gions with elliptic polarization would become intercon-
nected.

IV. SUPERFLUID BEHAVIOR

In order to check the superfluid properties of both polar-
ization components in this case, we have studied the disper-
sions of the excitations of these two polarization compo-
nents. This has been done by adding a small perturbation to
the wave function of the ground state previously found by
minimizing the free energy. Then we were solving the time-
dependent Gross-Pitaevskii equations for polaritons taking
the perturbed wave function as an initial condition,

i
�

�t
�+�r,t� = �−

2

2m
� + V�r� −

�

2
+ �1�+�r,t�2��+�r,t� ,

i
�

�t
�−�r,t� = �−

2

2m
� + V�r� +

�

2
+ �1�−�r,t�2��−�r,t� .

�8�

The resulting time-dependent wave functions of the two
polarization components were Fourier transformed in time
and space domains in order to get ��k ,��2 plotted in Fig. 4.
This figure shows clear signatures of both regimes: �a� local-
ized for one component with parabolic dispersion containing
a flat part �as seen in experiments5� and �b� delocalized su-
perfluid with a characteristic linear dispersion �also recently
observed experimentally13�. This is somewhat analogous to
He4 below a � point, where normal and superfluid compo-

nents coexist. The peculiarity of our case is that for polari-
tons these are the two polarization components of a single
condensate which show different behavior.

A realistic nonmagnetic CdTe cavity at magnetic fields up
to 10 T with a relatively strong disorder with
V0�0.5–1 meV would be possibly described by the left
part of the phase diagram �small ��.

With the increasing particle density �pumping intensity�,
the following phases would be observed for such cavity: �1�
circularly polarized localized phase �Anderson glass�, show-
ing flat dispersion and no superfluidity; �2� elliptically polar-
ized localized phase �Anderson glass�, showing flat disper-
sion for both components, no superfluidity, and a polarization
varying from point to point; �3� elliptically polarized semilo-
calized phase, showing flat dispersion and no superfluidity
for one component and linear dispersion with superfluid be-
havior for the other, and a polarization varying from point to
point. The density range where the semilocalized phase
could be observed is proportional to the value of the Zeeman
splitting of a bare exciton. For practical reasons, semimag-
netic cavities showing strong coupling24 might be interesting
for the observation of this phase; �4� elliptically polarized
superfluid phase showing linear dispersion and superfluid be-
havior for both components with polarization tending to lin-
ear in the infinite density limit.

For systems with weak disorder or at stronger magnetic
fields one would observe a different phase �2�: �2�� circularly
polarized superfluid phase, showing linear dispersion and su-
perfluidity with constant polarization degree �fully circularly
polarized�. The other circular component is completely ab-
sent.

Therefore, in this case the localized/superfluid phases will
be alternating. This manifests itself in the nonmonotonous
behavior of the superfluid fraction, showing a small mini-
mum for the phase �3�, associated with the appearing local-
ized component. This minimum should not be observed for
weaker magnetic fields, where the phase �2� is not superfluid.

V. CONCLUSIONS

To conclude, we have studied a polariton condensate in a
disordered microcavity in the presence of an external mag-
netic field both analytically �infinite mass case� and numeri-
cally �finite mass case�. A peculiar phase separating the
Anderson glass phase and the superfluid phase is found. It is
characterized by different properties of the two polarization

FIG. 3. �Color online�. Calculated spatial distribution of circular
polarization degree �c for the semilocalized phase.

FIG. 4. �Color online�. Dispersions of the excitations of the two
polarization components of a semilocalized condensate �a� localized
component and �b� delocalized component.
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components of the condensate, one of them being localized
and the other delocalized. We have shown that the dispersion
of the localized phase is parabolic whereas the dispersion of
the delocalized component is linear.
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